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The well-known vorticity-stream function approach [I ], which is often used to calculate 
flows in doubly connected domains with imporous walls, is applied here to a case including 
injection and suction of gas through porous walls. The injection and suction of gas sub- 
stantially complicate the problem as the stream function varies and is often undetermined. 
The proposed method allows one to overcome the difficulties that arise while formulating 
and solving this problem. 

i. Consider a parallel and axisymmetric flow of a viscous diathermal gas in the doubly 
connected domain D, bounded by the contours S (abcdghpq) and L (ks (Fig. i). The gas 
is injected through the porous segments ~m and nk of the contour L, while it exits the do- 
main D through the section qa of the contour S. 

The flow is described by the following system of equations: 

0(o) 
( v ,  v )  ,r  = - a ,  ( 1 . 1 )  

8 0  
Pe (W, V) 0 = (V, V) 0 + v ~-~,: 

where Re and Pe are the Reynolds and Peclet numbers respectively, W is the velocity vector 
with components u and v (Fig. I), @ is the temperature, V is the gradient operator, (V, V ) = 
82/8Z 2 + 82/8Y2 is the Laplace operator, (W, V) is the convective derivative, m = - 
[8/3y(I/yVp-8~/~y + 8/3z(I/yVp'8~/Sz)] is the vorticity, 3~/8y = yVpu and 8~/8z = -~yVpv are 
the derivatives of the stream function, p is the gas density, and v is defined as 

10, for parallel flow, All nondimensionai quantities are denoted by the upper-case 
[ i, for axisymmetric flow. 

letters, and all dimensional 6nes by the lower-case letters. It is assumed that the heat 
loss due to viscous dissipation is negligibly small. 

Following [2], the system of equations (i.i) reduces to an algebraic system of finite 
difference equations which is solved by the iterative method of successive relaxation with 
the Chebyshev polynomial parameters for ~. The convergence criterion usesthe maximum rela- 
tive discrepancy for all the variables. The dependence of the gas density on the temperature 
was determined by the equation of state for an ideal gas at constant pressure p = p0(e/e0), 
where 0 o is the temperature of the injected gas. 

2. The boundary conditions for the temperature were altered within the range of 6 w = 
8w/90 between 0.13 and I, and for e t = et/e 0 between 0.36 and I, where the subscript w denotes 
the temperature in the segments bc, cd, and dg of the contour S, and the subscript t the 
temperature in the segments s and mn of the contour L. The temperature boundary conditions 
for the axis of symmetry gq, the outlet qa, and the segments s and nk of the contour L are 
3e/By = 0, 88/8z = 0, and 8 = e0, respectively. 

The boundary conditions for the vorticity were posed as recommended in [3]. In order 
to overcome the difficulties caused by posing the boundary conditions for the stream func- 
tion (e.g., to eliminate the nonuniqueness of �9 on the contour L), the original doubly con- 
nected domain D is replaced by the simply connected domain DI, bounded by the contour G 
(abcdghks This was accomplished by introducing the fictitious boundaries hk and op. 
It is assumed that the gas parameters are identical on both fictitious boundaries. In order 
to minimize the geometrical distortion of the computational domain under consideration, the 
distance between fictitious boundaries should be a minimum from the point of view of the com- 
putational realization. 

Biisk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. I, pp. 
112-115, January-February, 1988. Original article submitted October 22, 1986. 
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Thus, the stream function is well-defined everywhere on the contour G, and its values 

can be obtained by integration: ~ = ~yVpudy _ yvpudz ~- cz. 
G 

The initially unknown integration constant c z was sought numerically in the finite- 
difference iterative process, using one of the following integral expressions: 

Y$ 

c~ = j" y"o~ (y, ~) dy; (2.  i ) 
Y~ 

Yl z2 

= - -  j yipovidz; (2.2) 
0 z I 

z2 Y3 

cz ---- -- j" y~p0v=dz q- j" yVp~ (~/, z~) dy. (2.3) 

zl Y2 

Here Yl, Y2, Y3, zi, and z 2 are the coordinates of the sections nk, ~m, cd, kS, and mn of 
the contour G, respectively; v i and v 2 are the linear velocities of injection through the 
sections nk and ~m, respectively, and P0 is the density of the injected gas. 

If v i, v=, and P0 do not depend on the coordinate z, the corresponding integrals on 
the right-hand sides of Eqs. (2.2) and (2.3) are easy to find, and the remaining integrals 
were determined numerically from the computational fields of the velocity and density for 
each iteration. The value of c z for subsequent iterations was obtained as an arithmetic 
mean of the three values of c z determined from Eqs~ (2.1)-(2.3). As the solution of Eq. 
(i.I) is convergent, c z approaches a constant value which is distinctive for the considered 
solution only. For the first iteration c z = 0. 

To assign ~ on the contour G, it is necessary to known the velocity profile on the 
fictitious boundaries. According to preceding results, the velocity profile for the as- 
sumed position of the fictitious boundaries (see Fig. i) was chosen as uf = (2VCz/pyy+i)e ~ 
(I -- ei-E), where ~ = (y/yi)V +i. 

3. The experimental study of parallel flows of air in doubly connected domains 
similar to the domain D revealed a characteristic feature for such flows, namely, t~e flow 
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of gas in the opposite directions from the separation line. The position of the separation 
line depends on the ratio v2/v I = X and on geometrical parameters of the domain. 

The experiments were performed jointly with the Laboratory of Gas Dynamics at the 
Institute for Thermophysics of the Siberian Branch, Academy of Sciences of the USSR (SO AN 
SSSR.) To visualize the flow, a 0.2-mm-thick, electrically heated nichrome wire was placed 
along the porous surface. The gas heated in the wake of the wire was observed with a 
Toepler instrument (Schlieren method). The comparison between the experimental data and 
the computational results shows satisfactory agreement for a broad range of X and geometries 
of the flow domain. The triangles in Fig. 2a, b Show the calculated position of the se- 
paration line for X = 1.17 and ~ = 0.43, and for X = 0.48 and ~ = 0.43, respectively 

(Y = 03 --g2)lu0. 

Some results of the numerical study for the axisymmetric flow are shown in Figs. 3a, 
b and 4a, b. The calculated profiles of the velocity in the cross section i-] (see Fig. 
i) of the cylindrical channel are shown in Fig. 3a. Profiles 1 and 2 correspond to the 

velocity for 0 w = 0 t = I, and 0 w = 0.18 and 0 t = 0.36, respectivelv;u m is the maximum value 
of the velocity in this section. The calculated velocity profiles follow closely the 
analytical solution for channels with injection of the inviscid gas: u = u m cos (~/2"E) 
[4]. They are shown by the dashed line in Fig. 3a. 

The distribution of the temperature calculated for the same section (curves 1 and 2 
for O w = 0.18 and 0 t = 0.36 respectively), and for the cross section b-2 (curves 3 and 4 
for 0 w = 0.45 and 0 t = 0.36 respectively) are shown in Fig. 3b for different temperature 
boundary conditions. Lines 3 and 4 show the dependence of the difference 0 - 1 on s I = 
(y/yb)2, where Yb is the radial coordinate of the point b. Clearly, under the assumed 
boundary conditions, the integral average temperature of the stream in the outlet (cross 
section b-2) is 10-20% less than the temperature for the velocity profiles in the cylindrical 
channel. It should be mentioned that the influence of the temperature boundary conditions 
on the velocity profiles in the cylindrical channel is insignificant. 

The velocity profiles calculated for the cross section 3-3 of the annular channel are 
= __ ( 2  shown in Fig. 4a. For the isothermal flow, for q (y2 Y~)/ Ya - Y~) < 0.8, the velocity 

profile (line i) agrees satisfactorily with the analytical solution [4], u = u m sin(~/2-q) 
(dashed line). While altering the boundary conditions (curve 2 for 0 w = 0.18 and 0 t = 0.36, 
and curve 3 for 0 w = 0.45 and O t = 0.36), the velocity profiles in the annular channel de- 
form noticeably. The temperature distribution in the outlet from the annular channel (cross 
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section 4-m) is shown in Fig. 4b (line 1 for 0 = 0.36 and line 2 for O = 0.18). The loca- 
tion of the separation line for 8w = 0.18, 8 t = 0.36, and ~ = 1 is denoted by 5 in Fig. 1 
(the solid line shows the direction of the flow), and for @w = 0.18, 8 t = 0.36, and ~ = 2.16 
by 6 (the dashed line shows the direction of the flow). The influence of the flow noniso- 
thermicity on the position of the separation line is not essential. 

The numerical experiment conducted to determine the effect of the distance between the 
fictitious boundaries on the flow pattern showed that,while this distance decreases by 6, 
the separation line is displaced by approximately 6/2 in the direction which provides better 
agreement with the experimental data. The influence of the position of the fictitious bound- 
aries on the calculated position of the separation line was also examined. It was established 
that the calculated position of the separation line is not affected by changes of the posi- 
tion of the fictitious boundaries where the proper velocity profile was assigned. The pos- 
ition of the fictitious boundaries, chosen as hk and op in Fig. i, seems to be more suitable 
for investigating the influence of nonisothermicity on the flow pattern, and more convenient 
from the point of view of numerical realization. 
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ACOUSTIC PROPERTIES OF A POROUS LAMINATED MEDIUM 

M. G. Markov and A. Yu. Yumatov UDC 624.131 

Study of the propagation of elastic waves in nonuniform, saturated, porous media is of 
interest both theoretically and from the viewpoint of applications in engineering and geo- 
physics. The propagation of elastic waves in such media can be systematically described 
within the framework of the Frenkel-Biot theory [I-4]. 
can write the equations of this theory in the form 

O2ul 02vl 0 OPi i 
P l ! - ~  + 022 0 -~  = b ~7 ( v ~ -  u~) 8xj 

02Ui O2vl ~ ~ 
az~' 

Ignoring thermoelastic effects, we 

(1) 

where u i and v i are components of the displacement vectors of the skeleton and fluid; Pzl 
is the effective density of the skeleton moving in the filler; P22 is the effective density 
of the filler moving in the porous medium; Pl2 < 0 is the added density of the fluid; Pi �9 = 
Ae6ij + 2Neij + QaSij; s = Qe + R~; e = divu; ~ = divv; eij = (I/2)(3ui/~x j + 8uj/Sxi) ; ~, 
N, Q, R are constants of the elastic constraints of the porous medium; the coefficient b 
characterizes friction due to the motion of the fluid: b = ~/Epr (D is the viscosity of 
the fluid, ~ is bulk porosity, and Kpr is the permeability) 

After we introduce the two scalar potentials 91 and 92 of the longitudinal waves and 
the vector potential of the transverse wave by means of the relations 

u = Vg~ + V92 + r o t W ;  (2)  

v = M1V91 + M2V92 + Mt rotu2" (3) 

in  t h e  c a s e  o f  ha rmonic  waves ,  sy s t em (1)  r e d u c e s  t o  a sy s t em o f  two s c a l a r  He lmho l t z  e q u a t i o n s  

Kalinin. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, 
pp. 115-119, January-February, 1988. Original article submitted June 4, 1986. 
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